A Supercomputer ARM Race?

May 28, 2013

The PC World site has a report of an interesting presentation made at the EDAworkshop13 in Dresden, Germany, this month, on possible future trends in the high-performance computing [HPC] market.  The work, by a team of researchers from the Barcelona Supercomputing Center in Spain, suggests that we may soon see a shift in HPC architecture, away from the commodity x86 chips common today, and toward the simpler processors (e.g., those from ARM) used in smart phones and other mobile devices.

Looking at historical trends and performance benchmarks, a team of researchers in Spain have concluded that smartphone chips could one day replace the more expensive and power-hungry x86 processors used in most of the world’s top supercomputers.

The presentation material is available here [PDF].  (Although PC World calls it “a paper”, it is a set of presentation slides.)

As the team points out, significant architectural shifts have occurred before in the HPC market.  Originally, most supercomputers employed special purpose vector processors, which could operate on multiple data items simultaneously.  (The machines built by Cray Research are prime examples of this approach.)  The first Top 500 list, published in June 1993, was dominated by vector architectures  — notice how many systems are from Cray, or from Thinking Machines, another vendor of similar systems.  These systems tended to be voracious consumers of electricity; many of them required special facilities, like cooling with chilled water.

Within a few years, though, the approach had begun to change.  A lively market had developed in personal UNIX workstations, using RISC processors, provided by vendors such as Sun Microsystems, IBM, and HP.   (In the early 1990s, our firm, and many others in the financial industry, used these machines extensively.)  The resulting availability of commodity CPUs made building HPC system using those processors economically attractive.  They were not quite as fast as the vector processors, but they were a lot cheaper.  Slightly later on, a similar transition, also motivated by economics, took place away from RISC processors and toward the x86 processors used in the by-then ubiquitous PC.

Top 500 Architectures

Top 500 Processor Architectures

The researchers point out that current mobile processors have some limitations for this new role:

  • The CPUs are mostly 32-bit designs, limiting the amount of usable memory
  • Most lack support for error-correcting memory
  • Most use non-standard I/O interfaces
  • Their thermal engineering does not necessarily accommodate continuous full-power operation

But, as they also point out, these are implementation decisions made for business reasons, not insurmountable technical problems.  They predict that newer designs will be offered that will remove these limitations.

This seems to me a reasonable prediction. Using more simple components in parallel has often been a sensible alternative to more powerful, complex systems.  Even back in the RISC workstation days, in the early 1990s, we were running large simulation problems at night, using our network of 100+ Sun workstations as a massively parallel computer.  The trend in the Top 500 lists is clear; we have even seen a small supercomputer built using Raspberry Pi computers and Legos.  Nature seems to favor this approach, too; our individual neurons are not particularly powerful, but we have a lot of them.


Top 500: Sequoia is Number One

June 18, 2012

Since 1993, the TOP500 project has been publishing a semi-annual list of the 500 most powerful computer systems in the world, as a barometer of trends and accomplishments in high-performance computing.   The systems are ranked based on their speed in floating-point operations per second (FLOP/s), measured on the LINPACK benchmark, which involves the solution of a dense system of linear equations.

The latest version of the list has just been released, in conjunction with the 2012 International Supercomputing Conference, currently being held in Hamburg, Germany.  The top system this time is the Sequoia system at the Lawrence Livermore National Laboratory, which clocked in at over 16 petaflops (16 × 1015 flops):

For the first time since November 2009, a United States supercomputer sits atop the TOP500 list of the world’s top supercomputers. Named Sequoia, the IBM BlueGene/Q system installed at the Department of Energy’s Lawrence Livermore National Laboratory achieved an impressive 16.32 petaflop/s on the Linpack benchmark using 1,572,864 cores.

The Japanese K-RIKEN system, ranked number 1 in the November 2011 Top-500 list, is now ranked second.  Ranked third is the Mira system at the Argonne National Laboratory, an IBM BlueGene/Q system with 786,432 processing cores, running at 8.15 petaflops.  The Chinese Tianhe-1A system, ranked second in November 2011 with 2.57 petaflops, is now ranked number 5.  The total capacity of the entire list is now 123.4 petaflops, compared with 74.2 in November.

As has been true for some time, the distribution of operating systems used is rather different from that in the desktop computing market:

OS Family Number % of Capacity
Linux 462 92.4
Unix 24 4.8
BSD-based 1 0.2
Windows 2 0.4
Mixed 11 2.2

Microsoft’s dominance of the desktop OS market clearly does not cut much ice in this area.

You can see the complete list here.


%d bloggers like this: